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Abstract. We calculate semiclassical limiting level spacing distributions P ( S )  for systems 
whose classical energy surface is divided into a number of separate regions in which motion 
is regular or chaotic. In the calculation it is assumed that the spectrum is the superposition 
of statistically independent sequences of levels from each of the classical phase-space 
regions, sequences from regular regions having Poisson distributions and those from 
irregular regions having Wigner distributions. The formulae for P ( S )  depend on the sum 
of the Liouville measures of all the classical regular regions, and on the separate Liouville 
measures of the significant chaotic regions. 

1. Introduction 

For a bound quantum system with f freedoms, the number of energy levels in any 
narrow interval E to E +AE diverges as AE/hJ in the semiclassical limit h+0. It is 
then possible to define the probability distribution P ( S )  of the spacings S between 
successive levels in the interval, and regard P ( S )  as one way of characterising the 
semiclassical spectrum at energy E. A natural question is: how is P ( S )  related to the 
classical motion on the energy surface E ?  Three special cases have been studied 
before; in each of them, P ( S )  takes universal functional forms parametrised by the 
mean level density p which, for a system with Hamiltonian H ( q ,  . . .%, p ,  . . . pr ) ,  is 
given by 

p = (2m'1)-~ 5 dq,  . . . 5 d %  dp ,  . . . dpfG(E - H(q1 . . . p f ) ) .  ( 1 )  

The first special case is that of one-dimensional systems, such as particles moving 
in single potential wells, where the phase-plane contours are simple closed curves. 
The levels form, locally, a perfectly regular sequence of WKB type, and  

P ( S ) =  S ( s - p - 1 ) .  ( 2 )  
This trivial situation will not be considered further. 

The second special case is that of multidimensional integrable systems, where 
trajectories wind smoothly round f-dimensional tori in the 2f-dimensional phase space. 
Berry and  Tabor (1977) showed that the levels are uncorrelated and so form a Poisson 
process whose level spacing distribution is 

(3) P( S )  = p e-ps. 
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The third special case is that of chaotic motion, where systems are ergodic and 
almost all orbits densely and unpredictably explore the (2f- 1 )-dimensional energy 
surface. Growing numerical evidence (most recently by Bohigas et a1 1984) and earlier 

persuasive theoretical argument (Pechukas 1983) suggest that the statistics of energies 
of these semiclassical irregular states are the same as those of ensembles of real 
symmetric matrices whose elements are Gaussian distributed (Porter 1965). For such 
systems, P (  S )  is closely approximated by the Wigner distribution 

by McDonald and Kaufman (1979), Berry (1981a) and Casati et \ a1 (1980)) and a 

P ( S )  =$rrp2s exp(+p2S2). (4) 
Generic systems do not conform to these special cases: their phase space is mixed, 

in the sense that some orbits with energy E wind regularly round $dimensional tori 
and others explore (2f- 1)-dimensional regions chaotically. Our purpose in this paper 
is to obtain corresponding expressions for P( S )  which provide a natural interpolation 
between the Poisson formula (3) and the Wigner formula (4). 

Underlying our calculation is the idea that each connected regular or irregular 
classical phase-space region in AE gives rise to its own sequence of regular or irregular 
levels. For the ith such region, the level density pi is proportional to the Liouville 
measure of the region and is given by an expression of the form ( 1 )  with the integration 
correspondingly restricted, and the level spacing distribution Pi( S )  has the form (3) 
for a regular region and (4) for an irregular region. In the semiclassical limit all these 
sequences are independent and the complete spectrum is obtained by their random 
superposition. The statistical problem of superposing sequences of levels is solved in 
§ 2, and the resulting level spacing distributions are studied in § 3. 

The function P ( S )  describes semiclassical spectra on scales of the order of the 
mean level spacing hf. On much larger scales, of order h,  there is long-range oscillatory 
clustering of the levels; this is not described by P ( S )  and arises from classical closed 
orbits, as originally pointed out by Gutzwiller (1967, 1969, 1970, 1971, 1978) and 
emphasised by Balian and Bloch (1972). On much finer scales the spectrum will be 
affected by tunnelling between classically separated regions of phase space (Ozorio 
de Almeida 1984; see also Berry 1984a); even in integrable systems such tunnelling 
violates our assumption of independence of level sequences from different phase-space 
regions, but its influence on P ( S )  is confined to the tiny region O<S< 
O(exp(-constantlh)) which is invisible on the scale h/ that we are studying here. On 
the finest scales of all, spectra are dominated by the effects of degeneracies (which 
can be made to occur by varying parameters in H ) ,  in ways explained by Berry (1984b). 
A discussion of semiclassical spectra in terms of the features resolved under different 
magnifications of energy intervals, as measured in comparison with h, is given by Berry 
(1984~).  More general reviews of semiclassical mechanics are given by Zaslavsky 
(1981) and Berry (1983). 

2. Superposition of level sequences 

Consider N sequences of levels with mean densities pi and spacing distributions P , ( S ) ,  
so that 

- 
Si = J dSSPi(S)  = p y ' ,  where J ~- d S  Pi( S )  = 1. 

0 0 
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The sequences are statistically independent, and we seek the spacing distribution P (  S) 
of the combined sequence obtained by superposing them. This combined sequence 
has mean level density 

given in terms of the Hamiltonian by equation (1) .  
We calculate P ( S )  in terms of the probability that there is no level in the interval 

E to E + S, given that there is a level at E. This probability is 1: P(x)  dx and is given 
as the sum of N independent contributions, the ith of which corresponds to E being 
a level of the ith sequence. Thus 

where in each term the factor p i / p  is the probability that E belongs to the ith sequence, 
1; dy P i ( y )  is the probability that no further level of this sequence lies in the interval, 
and Q j ( S )  is the probability that no level of the j th  sequence lies in the interval. 

To find Q j ( S ) ,  we note that in 

{ d a P , ( a ) a p j ) { ( l  - S / a ) e ( a - S ) }  (8) 

the first factor is the probability that E, which is uncorrelated with the j th  sequence, 
lies in a gap of length a to a + d u  of that sequence; and the second factor is the 
probability of having no level of this sequence in an interval of length S inside this 
gap ( e  denotes the unit step function). Integration over a then gives Q j ( S )  as 

m 

Q j ( S ) = p j  1 daP , (o ) (a -S ) .  
S 

(9) 

Thus (7 )  becomes 

This result takes a much simpler form if we define 

ra: r a  r m  
Zi(S)= J, d a  J d x P i ( x ) =  J d a P , ( a ) ( a - S )  

U S 

and integrate (10) over S, to give a factorised expression which embodies the statistical 
independence of the N sequences, namely 

l N  
Z( S )  = d a  [I dx P (x )  = - fl piZi (  S ) ,  

P i = l  

whose correctness is easily verified by differentiating the product with respect to S. In 
terms of this, the level spacing distribution of the full spectrum is 

(13) P (  S )  = d2Z( S)/dS2. 
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To show that this function is normalised to unity and gives the mean level spacing 
as p - ' ,  we need only realise that ( 5 )  and ( 1 1 )  imply 

Z,(O) == p ; l ,  dZ,(O)/dS= -1 (14) 

and observe that the product (12) implies corresponding relations for Z(0) and 
dZ(O) /dS ,  provided p satisfies (6). 

For later reference we note that from (1 I)-( 13) it follows that P(O), whose value 
is a simple index of fine-scale level clustering, is 

and that higher moments of the spacing distribution are given by 

S" = d S S " P ( S )  = n (  n - 1) d S  S " - 2 Z ( S )  ( n 2 2 ) .  (16) I: lox - 

The integrals converge for all n because of the exponential decay of all the factors Z, 
contributing to Z. 

Gurevich and Pevsner (1956) determined the statistics of the superposition of two 
independent level sequences, and introduced the functions Z, (S ) .  Lane (1957) also 
considered this problem, in unpublished work cited by Rosenzweig and Porter (1960). 
The latter authors studied the superposition of N sequences all of whose separate 
P , ( S )  have the same form but whose weightings p, are different. Our formulae ( 1  I)-( 13) 
constitute a slight generalisation of these results, and will now be applied in a 
semiclassical context. 

3. Spacing distributions 

According to the programme outlined in § 1, the sequences to be superposed have 
spacing distributions P , ( S )  of the form (3)  for those phase-space regions which support 
regular motion, and (4) for those supporting chaotic motion, with p, proportional to 
the Liouville measures of the regions. 

It is obvious physically that superposition of all the Poisson-type level sequences 
corresponding to regular motion will produce a sequence which is itself a Poisson 
process, P ( S )  being of the form (3) with p given by the sum of the level densities of 
the separate regular regions. And this result follows from (12) because the factors p,Z, 
corresponding to regular regions have, from ( 1  1 )  and (3), the form plZ, = exp( -p,S) .  
From now on we shall denote by p I  the level density of all the regular sequences taken 
together; the corresponding contribution to ( 12) is 

Z I ( S )  = exp(-p,S)/p,. (17) 
The remaining phase-space regions i = 2 , .  . . , N are chaotic, and ( 1  1 )  and the 

approximation (4) give 

z,(s)  = erfc(iJGp,S)/p, ( i 2 2 )  (18) 
where 
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The level spacing distribution is now obtained from (12) and  (13) as 

p dS2  1=2 

This is our central result. When S = 0 

1 N  

p 1=2 
P ( 0 )  = p -- pf. 

For systems with three or more freedoms, Arnold diffusion will ensure that there 
is just one chaotic region forming a connected web ; this phenomenon has its origin 
in the fact thatf-dimensional tori d o  not stratify the (2f- 1)-dimensional energy surface 
if fZ3 (see Lichtenberg and Lieberman 1983). Of course there are, generically, 
infinitely many regular regions (tubes filled with tori), but we have seen that these can 
be amalgamated into a single level sequence with density p , .  Thus for f 2 3 we can 
take N = 2, with pz proportional to the measure of the whole chaotic region. The 
particularly simple form of P ( S )  in this case will be written explicitly later. 

When f = 2 there are, generically, infinitely many chaotic regions, which manifest 
themselves as separate stochastic components on a Poincark surface of section (Lichten- 
berg and  Lieberman 1983). In such cases we expect that in practice (20) will be applied 
for finite N, with N -  1 being the number of chaotic regions considered to have 
significant measure. But it is important to have a way of choosing N, and to confirm 
that the infinitely many chaotic regions thus neglected have negligible influence on 
P ( S ) ;  this we now do. 

Let v ( p ’ )  dp’  be the number of classical chaotic regions giving sequences with level 
densities between p’  and p‘+dp’ .  This function must satisfy the normalisation 

where as before p is the total mean level density. The interesting case is that for which 
the total number of chaotic regions, l,”-’I dp’  v ( p ‘ ) ,  diverges, whereas ( 2 2 )  is finite. 
This implies that 

if v ( p ’ )  + constant/(p’)” as p ’ +  0 then 1 s a s 2. (23) 
To gauge the effect of the divergence of v ( p ’ )  we write the infinite product for Z ( S )  
in the form of N factors corresponding to the regular region plus the predominant 
chaotic regions, multiplied by a continuous ‘tail’ from the chaotic regions of small 
measure. Equations (12), (17) and (18) now give 

where pmin is the density of the level sequence corresponding to the largest of the small 
chaotic regions, given by 

Obviously pmin<< p. If in addition we consider only S satisfying 

P m i n S < <  1, (26) 
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use of (19) with x small enables the logarithm in (24) to be written as 

~n[erfc(&p'~)] = - p ' ~ .  (27) 

Equations (25) and (24) now show that the combined effect of all the small chaotic 
regions can be considered as a small modification to the regular density p I .  The 
condition (26) has a simple physical interpretation, which also provides a criterion for 
choosing N :  'small' chaotic regions are those giving rise to level sequences so sparse 
that there is a negligible chance of finding such a level in an energy interval S. Evidently 
N must be taken larger if P ( S )  is required for larger S. 

The foregoing argument confirms that even if f = 2 the level spacing distribution 
(20) can be well approximated by considering a finite number N - 1 of chaotic regions. 

The most important case of (20) occurs when N = 2; this applies, as we have seen, 
when fz 3, and also when f =  2 if one chaotic region predominates. We normalise 
the energy scale to ensure that the mean density p, and thus the mean level spacing, 
are unity, and denote the spacing distribution by P J S ,  p , ) ;  p I  is now simply the fraction 
of the energy surface for which motion is regular. Then Z (  S )  = exp( - p l S )  erfc(gJ.rrpS) 

1 0  

- 
!5 0.5 
a? 

Y . . . . . . .  , , I  
0 1 2 

8 
0 1 

5 
2 

0 1 2 
8 

Figure 1. Level spacing distributions P,(S, p , )  computed from (28) and (33)  for p ,  = 0,0.1, 
0.25, 0.5, 0.75 and 1.0: ( a )  N = 2 ;  (6) N = 3 ;  ( c )  N = 5 ;  ( d )  N =  I O .  p ,  is the fraction of 
the classical energy surface for which the orbits lie on tori; the remainder of the energy 
surface is assumed to be divided into N - I separate chaotic regions of equal measure. 
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and (20) give the simple expression 

P,(s, pI) = p: e-pls erfc(giJ?rpS) +(2plp  +f77p3~)  exp(-pIS-Arp2S2) ( p =  1 -PI).  
(28) 

Figure 1 ( a )  shows the form of P2 for several pI values interpolating between p l  = 0 
(Wigner distribution) and p1 = 1 (Poisson distribution). Evidently a sensitive indicator 
of the regular fraction p1 is (cf (21)) 

P,(O,p,)= 1 -p2=P1(2-Pl). (29) 

s2 = (2/pI)[1 -exp(p:/np2) erfc(p1/J;i5)l, 

p = ; ( n  +l)(n+2)(-1)"  d"$/dp;. (31) 

A less sensitive indicator is (from (16)) the mean square spacing 
- 

(30) 

which increases from 4/77 (pl = 0) to 2 (pI = 1) .  Higher moments are given by 

To illustrate the effect of more than one chaotic region, we consider the case where 
they all have the same measure p, so that (again choosing p = 1) 

p =  (1 -p1)/(N- 1). (32) 

Equation (20) gives, for the spacing distributions which we now denote by P N ( S ,  pl), 

P~(s, pI) = e-"iS[erfc(fJ77p~)lN-3{p:[erfc(g~p~)~2 + ( N  - 1 )  erfc(&pS) 
- 

xexp(-Arp2S2)(2pIp +t77p3s) + ( N  - 1 ) ( ~ - 2 ) p ~  exp(-A77p2S2)}. 
(33) 

Figures l(b-d) show the forms of P3, P5 and PI,, for a sequence of p ,  values. It is 
clear that even when the regular density pI is negligible the superposition ot' N - 1 
independent Wigner distributions of equal strength tends rapidly to a Poisson distribu- 
tion as N increases, and indeed this follows from a trivial asymptotic analysis of (33). 

4. Discussion 

The central result of this paper is the family of level spacing distributions (20), whose 
calculation requires only a knowledge of the purely classical quantities pI. Is it feasible 
to attempt numerical tests of these predicted forms for P( S ) ,  by comparing them with 
quantum mechanically computed level spacing distributions? For the most commonly 
studied quantal systems displaying both regular and chaotic classical motion, namely 
particles moving in the fields of nonlinearly perturbed multidimensional harmonic 
oscillators, we think such a comparison is probably not feasible at present. The reason 
is that for these systems the relative measures of regular and chaotic regions change 
with energy, and in order to calculate P ( S )  corresponding to a given energy E, as 
described in P 1, the energy interval A E  must be small. To get enough levels in this 
interval to enable P ( S )  to be computed to sufficient accuracy would require an h so 
small as to demand the diagonalisation of prohibitively large matrices. (The histograms 
of level spacing distributions for coupled Morse oscillators, recently published by 
Matsushita and Terasaka (1984), incorporate levels over a wide energy range and so 
should not be compared with the curves in figure 1. )  
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This difficulty could be avoided by choosing systems whose Hamiltonians have 
scaling properties which imply that the classical phase-space structure is the same at 
all energies. Then the restriction to levels within AE is unnecessary, and any sequence 
may be employed to compute P ( S ) ,  provided the energies are scaled to have uniform 
mean density. For example, non-relativistic particles moving in potentials scaling as 

V ( a q ,  . . . aqf )  = Cu’V(q,. * . qf) (34) 

would allow P ( S )  to be calculated not from the levels E,,, but by using the scaled 
sequence 

(35) - Ef+f/S-I 
E m -  m 

A particularly suitable class of systems of this type is planar quantum billiards, for 
which f = 2 and s + 00. Among billiards with analytic boundaries, and inside which 
the classical motion exhibits both regularity and chaos, are the ovals studied by Berry 
(1981b) and the heart shapes studied by Robnik (1983, 1984). 

Finally, J H Hannay has remarked to us that our procedure for obtaining the 
semiclassical P (  S) can be considered as associating with each classical invariant 
manifold a Wigner-distributed level sequence, whose level density is proportional to 
the Liouville measure of the manifold, and then superposing all the sequences. An 
irregular region is a single indecomposable manifold with finite measure and contributes 
a Wigner distribution with finite density as explained in 0 3. A regular region decom- 
poses into infinitely many tori; each of them contributes a Wigner distribution of 
infinitestimal strength, whose superposition gives the Poisson distribution for the whole 
regular region (usually this is considered (Berry and Tabor 1977) to arise from the 
superposition of the sequences of equally spaced levels obtained by varying one 
quantum number at a time). 
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Note added in proof: A series of curves qualitatively similar to figure 1 ( a )  have been computed by Seligman 
et a1 (1984) for the levels of a family of two-dimensional non-integral potentials exhibiting different degrees 
of stochasticity. 
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